1011

Matrix Isolation Evidence for Reversible α -Elimination of Hydrogen from a Chromium Methyl Compound to give a Chromium Methylene Hydride Species

Khalil A. Mahmoud,^a Antony J. Rest,*a and Helmut G. Alt^b

^a Department of Chemistry, The University, Southampton SO9 5NH, U.K. ^b Laboratorium für Anorganische Chemie, Universität Bayreuth, D-8580 Bayreuth, West Germany

I.r. spectroscopic evidence, including ¹³CO labelling and energy-factored force-field fitting, is presented to show that photolysis of $[(\eta^5-C_5H_5)Cr(CO)_3CH_3]$ in gas matrices at 12 K leads to a methylene hydride species, $[(\eta^5-C_5H_5)Cr(CO)_2(CH_2)H]$, following CO dissociation and α -H elimination reactions and that this process is reversible.

Reversible elimination of hydrogens from carbons which are in β -positions relative to transition metals has been widely established to occur and to be important in catalytic reactions, *e.g.* olefin isomerisation. Although less well documented, elimination involving hydrogens in the α -position may also occur [equation (1)] and may be important in generating active intermediates in metal catalysed disproportionation reactions.^{1,2} Strong evidence for α -elimination is the isolation of

$$\begin{array}{c}
H \\
| \\
M-CH_3 \rightleftharpoons M=CH_2
\end{array} (1)$$

 $[(\eta^5-C_5H_5)_2W(CD_2PPhMe_2)D]^+$ from the reaction of $[(\eta^5-C_5H_5)_2W(\eta^2-C_2H_4)CD_3]^+$ with PPhMe₂.³ It was proposed that the product arose *via* an equilibrium between two cationic intermediates [equation (2)]. Evidence for α -elimination for the chromium complexes [(PhCH₂CH₂CD₂CH₂)₃Cr·3thf] (thf = tetrahydrofuran) and [(PhCH₂CH₂CD₂CH₂)₃Cr·3thf] is inferred from the presence of PhCH₂CH₂CD₂CD=CHD among the products. The presence of CH₂CD₂ and, after hydrolysis, of HD from the decomposition of [(CD₃)₃Cr·3thf] also indicates a α -H elimination pathway;⁴ a transitory carbene

Figure 1. Infrared spectra from an experiment with $[(\eta^5-C_5H_5)-Cr(CO)_3CH_3]$ isolated at high dilution in a CO matrix at 12 K: (a) after deposition, (b) after 60 min photolysis with $\lambda > 430$ nm radiation, (c) after 180 min further photolysis using the same radiation, and (d) after annealing for 2 min. Bands marked (*) are due to $[(\eta^5-C_5H_5)Cr(^{12}CO)_2(^{13}CO)CH_3]$ present in natural abundance.

complex has been suggested as an intermediate.⁵ In this communication we report matrix isolation evidence for a reversible process which is interpreted as involving a chromium methylene hydride species.

I.r. spectra from an experiment[†] with $[(\eta^5-C_5H_5)Cr(CO)_3 CH_3$ isolated at high dilution (ca. 1: 2000 to 1: 5000) in a pure CO matrix at 12 K are shown in Figure 1. The spectrum before photolysis [Figure 1(a)] showed two strong bands in the terminal CO stretching region at 2012.5 and 1935.6 cm⁻¹ together with weak bands (marked *) which arise from [(η⁵-C₅H₅)Cr(¹²CO)₂(¹³CO)CH₃] in natural abundance. Irradiation with visible light ($\lambda >$ 430 nm) produced two new bands at 2020.0 and 1938.5 cm⁻¹ [Figure 1(b)]. Further irradiation with the same photolysis source enhanced the intensities of the new bands at the expense of the parent bands [Figure 1(c)]. Annealing the matrix to ca. 30 K for two minutes and then recooling to 12 K resulted in a reduction in the intensities of the new product bands and regeneration of the bands of the starting complex [Figure 1(d)]. Similar bands together with a band due to 'free' CO were observed for CH₄, Ar, N₂, and even 5% C₂H₄ doped CH₄ matrices, in which the analogous Mo and W complexes gave $[(\eta^5-C_5H_5)M(CO)_2(C_2H_4)CH_3]$ complexes $(M = Mo, W).^{7}$

The high dilution used, the increasing and decreasing of the new bands with a constant relative intensity, and the reversibility of the primary photoreaction rule out a polynuclear species and indicate a single new product formed via a simple reaction process, viz. ejection of a CO ligand. The large shift to lower wavenumbers of the bands for $[(\eta^5-C_5H_5)Mo(CO)_2-$ CH₃] (ν_{co} at 1966.0 and 1880.1 cm⁻¹; CH₄) compared with those for [(η^5 -C₅H₅)Mo(CO)₃CH₃] (ν_{co} at 2023.9 and 1937.0 cm⁻¹; CH₄),⁶ however, enables the co-ordinatively unsaturated 16 electron species, $[(\eta^5-C_5H_5)Cr(CO)_2CH_3]$ to be discounted. Similarly, separate experiments with $[(\eta^5-C_5H_5)Cr(CO)_3H]$ $(v_{co} \text{ at } 2016.7, 1943.6, \text{ and } 1932.7 \text{ cm}^{-1})$ in CO matrices at 12 K ruled out this compound and its photoproducts $[(\eta^5-C_5H_5) Cr(CO)_{3}$ ·] (v_{co} at 1986.3, 1910.4, and 1902.3 cm⁻¹) and HCO $(v_{c0} \text{ at } 1859.2 \text{ cm}^{-1})$.⁷ In order to establish the identity of the new metal-containing product, experiments were carried out using 5% ¹³CO doped CH₄ matrices. Initial brief irradiation caused some ¹³CO/¹²CO exchange in the parent complex but longer photolysis rapidly destroyed any $[(\eta^5-C_5H_5)Cr ({}^{12}\text{CO})_{3-n}({}^{13}\text{CO})_n\text{CH}_3$ complexes (n = 0-3) and produced new ¹³CO/¹²CO bands corresponding to the ¹²CO photoproduct. The ¹³CO/¹²CO enrichment bands were subjected to an energy-factored force-field fitting procedure for metal carbonyl fragments which has been described elsewhere.8,9 Comparison of the observed and calculated band positions for the new species revealed that the bands arose from a $[Cr(CO)_{2}]$ fragment rather than a $[Cr(CO)_3]$ fragment (Table 1), which is consistent with the observation of 'free' CO in CH₄ and Ar matrices. In order to produce higher wavenumber bands than for $[(\eta^5-C_5H_5)Cr(CO)_3CH_3]$ on ejection of a CO ligand some other π -acceptor ligand must have become co-ordinated to the metal. Since this ligand must have been previously coordinated to the metal in some form, it is proposed that α -H elimination follows CO dissociation and that the new photoproduct is $[(\eta^5-C_5H_5)Cr(CO)_2(CH_2)H]$ (Scheme 1). Comparison of the interaction force constant ($k_1 = 66.6 \text{ N m}^{-1}$)

[†] Details of the 12 K cryostat and vacuum system, techniques for achieving high dilution matrices, i.r. spectrometers, the photolysis lamp and filters to effect wavelength-selective photolysis, and matrix gases have been described previously.⁶

[‡] It had been hoped to demonstrate the Cr-H bond using v_{Cr-H} and the appropriate isotopic shift on deuteriation. However, v_{Cr-H} in this species and $[(\eta^5-C_5H_5)Cr(CO)_3H]^7$ is extremely weak and so this means of verification proved impossible.

Scheme 1

n = 1 or 2

Table 1. Observed and calculated^a band positions (cm⁻¹) of terminal CO stretching modes for the photolysis products formed from $[(\eta^5-C_5H_5)Cr(CO)_3CH_3]$ in 5% ¹³CO doped CH₄ matrices at 12 K.

Complex	CO	Observed	Calculated
$[(\eta^{5}\text{-}C_{\mathfrak{s}}H_{\mathfrak{s}})Cr({}^{12}CO)_{\mathfrak{s}}(CH_{\mathfrak{s}})H]$	A'	2016.5	2015.6
	A″	1933.0	1932.0
$[(\eta^{5}-C_{5}H_{5})Cr({}^{12}CO)({}^{13}CO)(CH_{2})H] = C_{1}$	A	1998.5	1998.6
	A	1905.8	1905.1
$[(\eta^5-C_5H_5)Cr(^{13}CO)_2(CH_2)H]$	A'	1969.8	1970.4
C_s	A″	1888.0	1889.0

^a Refined energy-factored stretching (K) and interaction (k_1) force constants for $[(\eta^5-C_5H_5)Cr(CO)_2(CH_2)H]$: K = 1574.6 and $k_1 = 66.6$ N m⁻¹.

with those for $[(\eta^5-C_5H_5)Mo(CO)_3CH_3]$ ($k_{cis} = 43.8$ and $k_{trans} = 49.0$ N m⁻¹)⁶ suggests that CO ligands and the hydride and methylene ligands are *trans* to one another. Support for the *trans* configuration is afforded by the observation that on complete photodestruction of $[(\eta^5-C_5H_5)Cr(CO)_3CH_3]$ the lower band of $[(\eta^5-C_5H_5)Cr(CO)_2(CH_2)H]$ is more intense than the upper band, *i.e.* $I_{antisym}/I_{sym} > 1$.

This work provides the first direct evidence for reversible

elimination of α -hydrogen and sets proposed carbene hydride reaction intermediates on a firmer basis, *e.g.* equation (2).

We thank the Lebanese University Faculty of Science for a Studentship (to K. A. M.), the S.E.R.C. for a grant (to A. J. R.), and the Deutsche Forschungsgemeinschaft for support (to H. G. A.).

Received, 6th July 1983; Com. 906

References

- 1 J. P. Collman and L. S. Hegedus, 'Principles and Applications of Organo Transition Metal Chemistry,' University Science Books, Mill Valley, California, 1980.
- 2 C. Masters, 'Homogeneous Transition Metal Catalysis,' Chapman and Hall, London, 1981.
- 3 N. J. Cooper and M. L. H. Green, J. Chem. Soc., Chem. Commun., 1974, 761; J. Chem. Soc., Dalton Trans., 1979, 1121.
- 4 C. Baird, J. Organomet. Chem., 1974, 64, 289.
- 5 J. R. C. Light and H. H. Zeiss, J. Organomet. Chem., 1970, 21, 391; 1971, 26, 101.
- 6 K. A. Mahmoud, R. Narayanaswamy, and A. J. Rest, J. Chem. Soc., Dalton Trans., 1981, 2199.
- 7 H. G. Alt, K. A. Mahmoud, and A. J. Rest, unpublished results.
- 8 R. N. Perutz and J. J. Turner, Inorg. Chem., 1975, 14, 262.
- 9 P. S. Braterman, 'Metal Carbonyl Spectra,' Academic Press, London, 1975.